

Automated simulation of scenarios to guide the development of a crosswind stabilization function

Klaus-Dieter Hilf, Jochen Rauh (Daimler AG) Ingo Matheis, Jakob Mauss (QTronic GmbH)

6th IFAC Symposium Advances in Automotive Control July 12-14, 2010, Munich, Germany

Motivation

Ever growing complexity of automotive controllers

How to validate and test?

- do more road tests ?
- write more test scripts ?

This does not scale well Code size grows faster New processes needed

After initial coding you can expect one bug per 20 lines of code

- After thorough unit testing you can expect 1 bug per 1000 lines of code in the final release
 - > 1 line ~5 bytes, so 1 bug per ~5KB

Application	Code Size	Statistics
Steering Angle Sensor	32KB	7 Bugs
Low-end Sensor Cluster	128KB	26 Bugs
Airbag Controller	256KB	52 Bugs
EPS Controller	512KB	104 Bugs
Central Chassis Controller	1.5MB	308 Bugs
source: presentation by Hans Adlkofer, Infineon, 2009		

Idea

- increase degree of automation
- generate and evaluate useful test cases automatically

Outline

- Motivation
 - Principle of the scenario generator
- Validation of the crosswind stabilization function
 - the function
 - the validation setup
- Validation results and Conclusion

ldea

- intelligent generation of 1000s of differing test scenarios
- active attempt to:
 - maximize state coverage
 - drive the system in "difficult" situations

Benefit

- high coverage
- low efforts for test specification

TestWeaver - Test Generation Strategy

TestWeaver - Test Generation Strategy

The Crosswind Stabilization Function (CSF)

- change of wheel load imposed by ABC (incl. CSF)
- resulting lateral tire force
- yaw to compensate the wind

System model: vehicle with CSF

14.07.2010 6th IFAC Symposium Advances in Automotive Control, Munich, Germany

System model: Road and wind

superposition of two bezier splines control points generated "on the fly"

Automated validation

Objective: Validation of the CSF safeguard function

- activate CSF only in case of strong crosswind
- active for at most 4 seconds
- not activated by uneveness of road, steering actions or wheel slip

Crosswind stabilisation

- generated and analyzed 100.000 different driving scenarios, each 45 sec. within 3 weeks
- Iterative improvement of the safeguarding function.
 See paper for details.
- Systematic fault injection, to validate fault tolerance

Conclusion

- The presented approach seems extremely well suited for the validation of complex automotive controllers
- Main benefit:
 - high test coverage
 - with low work effort