

Model-based Development of a Dual-Clutch Transmission using Rapid Prototyping and SiL

Holger Brückmann, Jochen Strenkert, Dr. Uwe Keller, EP/MAG, Daimler AG Benno Wiesner-Tittes, Dr. Andreas Junghanns, QTronic GmbH July 1, 2009

Slides presented at the VDI Congress Transmissions in Vehicles 2009, Friedrichshafen, Germany, 30.06.-01.07.2009

Outline of the talk

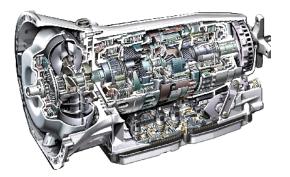
1 History and Motivation
2 DCT Development
3 Rapid Prototyping
4 Automated Testing
5 Code Coverage Analysis
6 Outlook

Outline of the talk

1	History and Motivation					
2	DCT Development					
3	Rapid Prototyping					
4	Automated Testing					
5	Code Coverage Analysis					
6	Outlook					

History and Motivation

Software-in the-Loop simulation is used at Daimler transmission development since many years:

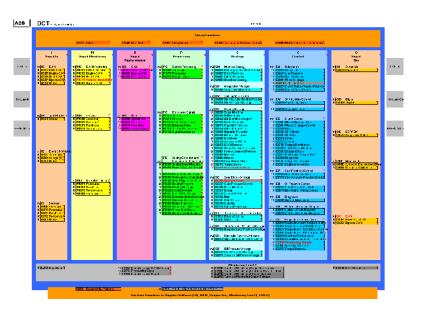


Autotronic since 1998

- Rapid-prototyping via A-Muster
- Simulink-SiL with floating-point code
- Module- and system-tests in Simulink
- Continuous operation simulations with fix-point code
- many different tools
- many of them developed in-house
- Objective for new projects:
 - + simplify tool chain
 - + use of "standard software"
 - + minimize in-house customization of tools
- first application of the new tool chain: dual clutch tranmission (DCT) development

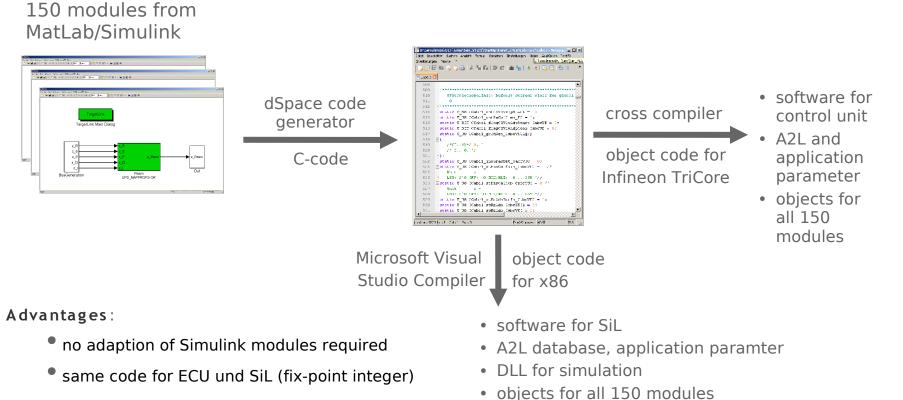
7G-Tronic since 1998

- Rapid-Prototyping via Backbone
- Fix-point code simulation
- System tests
- Continuous operation simulations with fix-point code


Outline of the talk

Function tool box

- software functions with ca. 150 modules
- developed using MatLab/Simulink/Stateflow
- and dSpace TargetLink with DataDictionary
- 100% autocode

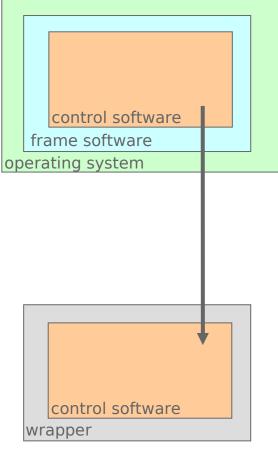


Objective of SiL:

- integrated tool chain
- cover software-in the-loop and rapid prototyping
- support software validation and automated test

Workflow for software development

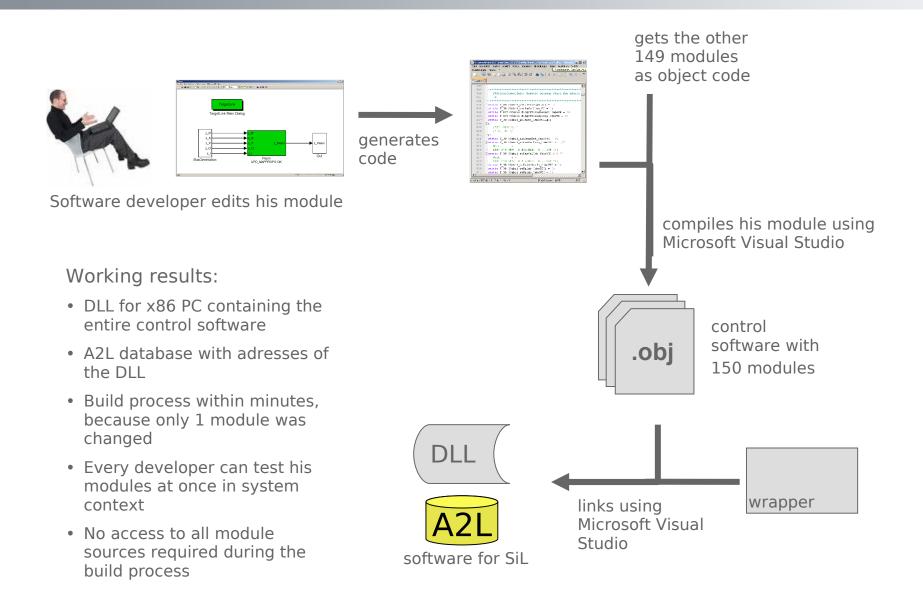
- ECU and SiL use the same sources
- DCT with RPT and SiL VDI sildes.ppt Model-based Development of a Dual-Clutch Transmission using Rapid Prototyping and SiL, 01.07.09 slide 7



Structure of the SiL software

The wrapper emulates the functions of the frame software.

Many wrapper functions simply return default values.



- + complete control software
- + CAN Data
- + EEPROM
- no error code memory
- no diagnostic functions

Tools:

- Simulation: Silver (QTronic)
- Measurement: Canape (Vector)
- Debugging: Visual Studio (Microsoft)
- Automated Test: TestWeaver (QTronic)
- Code Coverage: Testwell CTC++ (Verifysoft)

Tools:

- Simulation: Silver (QTronic)
- Measurement: Canape (Vector)
- Debugging: Visual Studio (Microsoft)
- Automated Test: TestWeaver (QTronic)
- Code Coverage: Testwell CTC++ (Verifysoft)

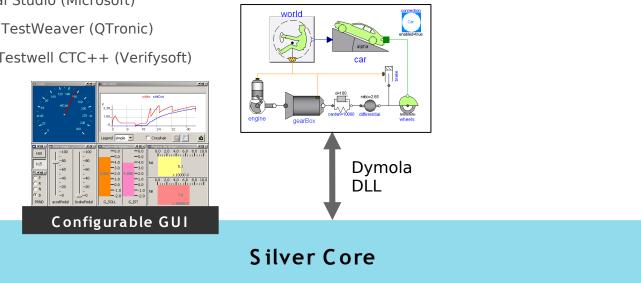
Graphical user-interface (GUI) to SiL with Silver:

- Interaction of driver/user with simulated car
- Accel pedal, brake padel, ignition, temperature, ...
 can be controlled
- All inputs and outputs can be directly manipultated

Silver Core

0.0 2.0 4.0 6.0 8.0 10

Configurable GUI

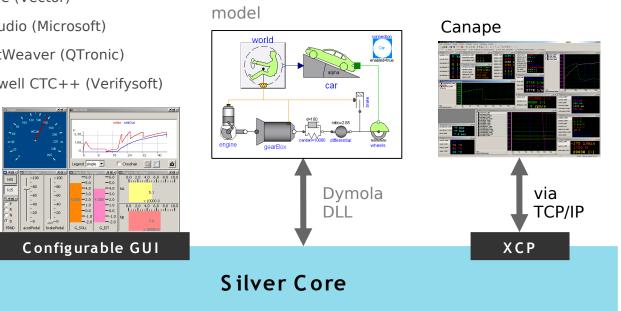

Tools:

- Simulation: Silver (OTronic)
- Measurement: Canape (Vector)
- Debugging: Visual Studio (Microsoft) •
- Automated Test: TestWeaver (QTronic)
- Code Coverage: Testwell CTC++ (Verifysoft) •

hardware DLL:

- simulated vehicle, engine and transmisssion
- developend in-house using Dymola •

hardwaremodel

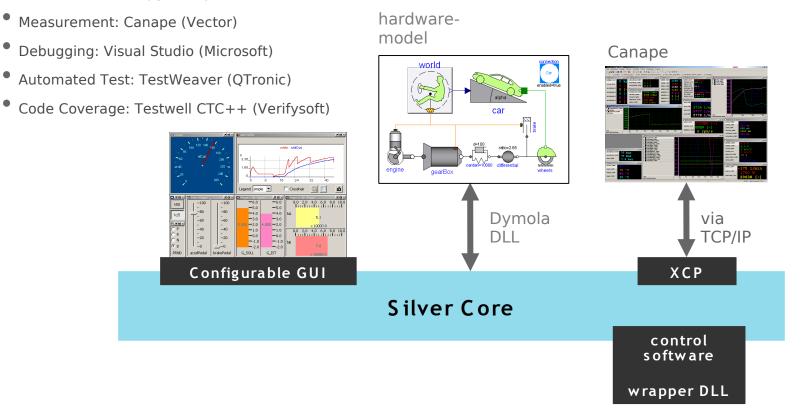

Tools:

- Simulation: Silver (OTronic)
- Measurement: Canape (Vector)
- Debugging: Visual Studio (Microsoft) •
- Automated Test: TestWeaver (QTronic)
- Code Coverage: Testwell CTC++ (Verifysoft)

XCP with Canape:

hardware-

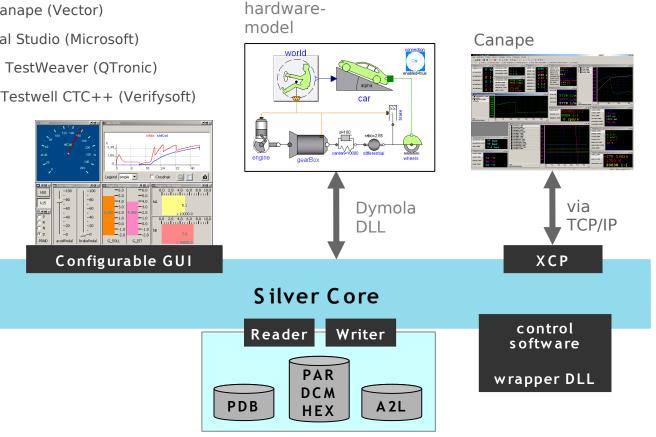
- XCP measurements via TCP/IP and Gigabit-Ethernet
- no limitation of bandwith as with CAN
- online calibration of parameters



•

Control software with wrapper DLL:

- entire TCU control software (all 150 modules)
- frame software software emulated by wrapper



Simulation environment Tools: Simulation: Silver (OTronic)

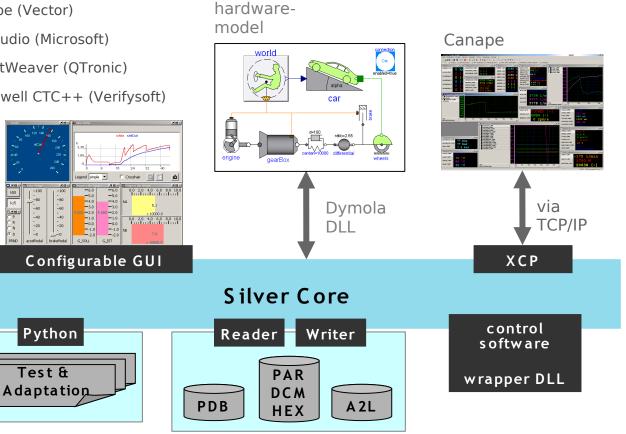
A2L and parameter:

- A2L with address infromation adapted to the DLL
- complete and latest parameter values loaded at simulation start

Simulation environment

Tools:

- Simulation: Silver (OTronic)
- Measurement: Canape (Vector)
- Debugging: Visual Studio (Microsoft)
- Automated Test: TestWeaver (QTronic)
- Code Coverage: Testwell CTC++ (Verifysoft)



Tools:

- Simulation: Silver (OTronic)
- Measurement: Canape (Vector)
- Debugging: Visual Studio (Microsoft)
- Automated Test: TestWeaver (QTronic)
- Code Coverage: Testwell CTC++ (Verifysoft)

Scripting with Python:

frequently used procedures can be automated using scripting (e.g. engine start, adaptation procedure)

DCT with RPT and SiL VDI sildes.ppt



Tools:

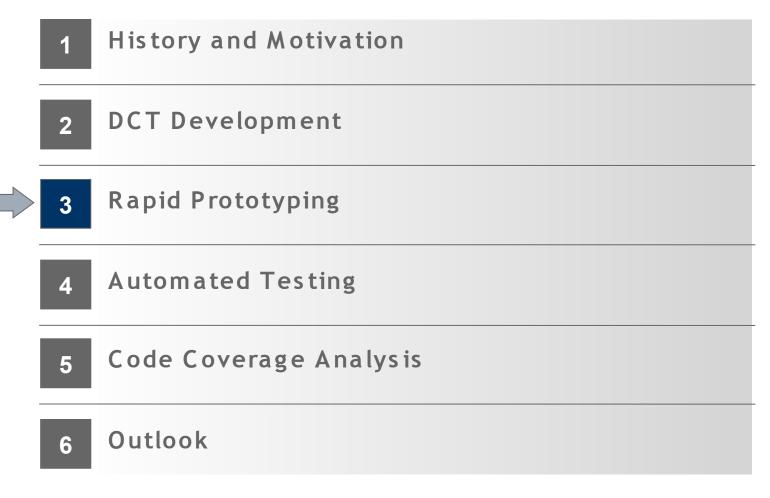
- Simulation: Silver (QTronic)
- Measurement: Canape (Vector)

Debugging with Visual Studio:

- Simulation can be suspended at any time
- Visual Studio Debugger can be attached to the Silver simulation process.

hardware-

DCT_with_RPT_and_SiL_VDI_sildes.ppt

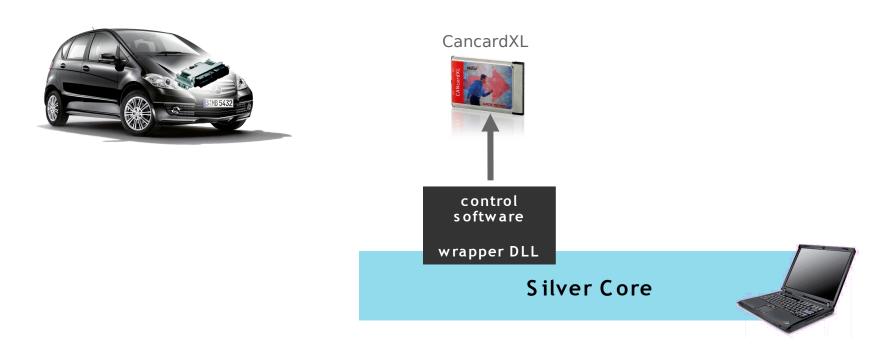


Advantages of SiL

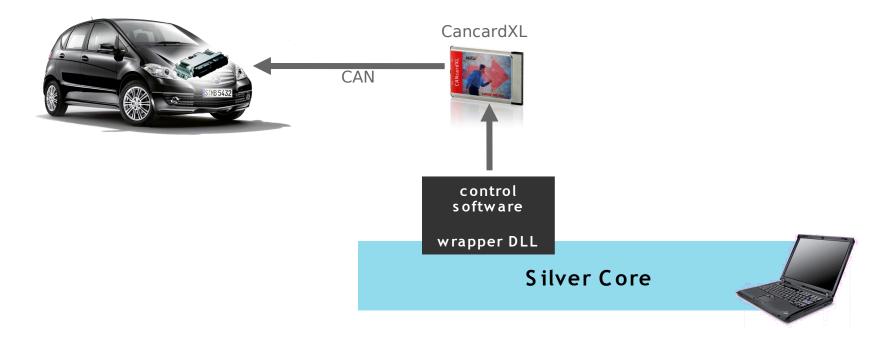
- Accelerated and early detection of errors because every developer can test his module in the context of all 150 modules
- Measurement as in a real vehicle (same measurement config. file)
- Fault simulation
 - sensor faults, gear jumps, overheating
 - convenient test environment for fault protection, detection and recovery strategies
- Support for EEPROM and adaptation procedures
- Scripting with Python
 - automated computation of adaptation values
- Debbuging
 - Every module developer can test and debug his module in closed-loop system context

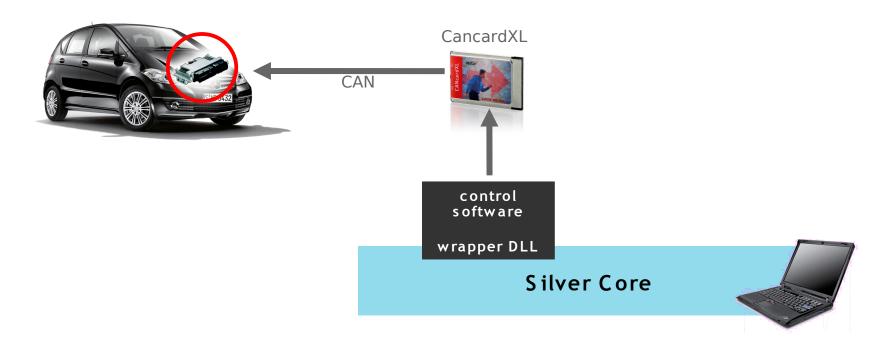
Outline of the talk

- 1 Silver simulation runs on a standard laptop:
 - without graphical user-interface
 - without simulation of the hardware (vehicle)
 - with Canape and XCP via TCP/IP
 - with wrapper DLL and entire control software

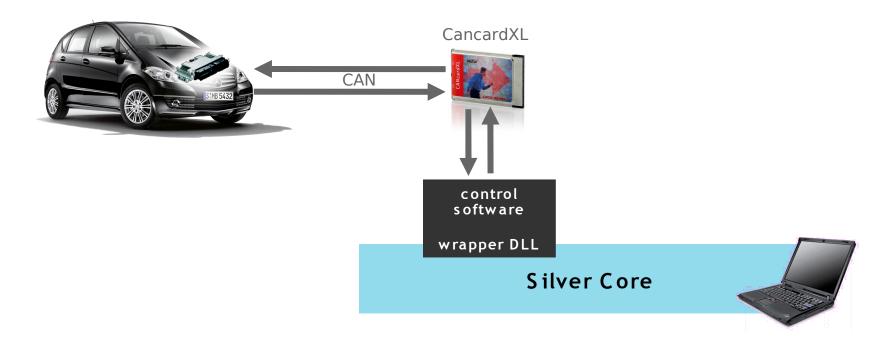


Rapid Prototyping

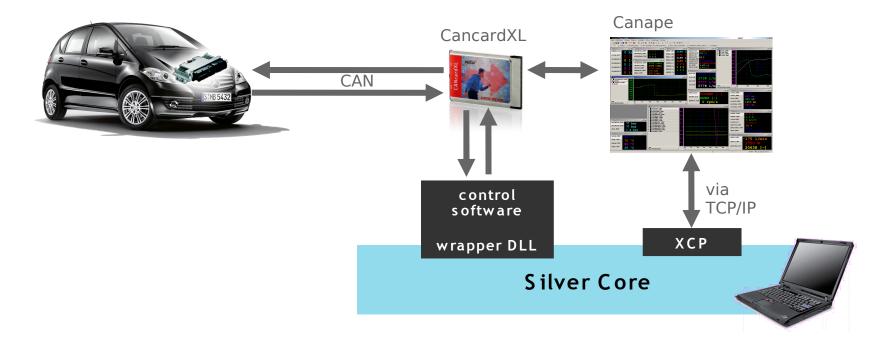

2 Wrapper DLL connects to CancardXL


Rapid Prototyping

3 CancardXL connects to ECU in the vehicle via CAN


4 ECU in vehicle is set to bypass mode. In bypass mode, the ECU overrIdes internally generated control signals by control signals received via CAN

Rapid Prototyping


5 ECU in vehicle sends measured sensor values via CAN to Silver

Rapid Prototyping

6 Canape measures both, the control software internal signals via XCP, as well as ECU signals via CancardXL and CAN,

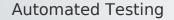
Outline of the talk

1	History and Motivation
2	DCT Development
3	Rapid Prototyping
4	Automated Testing
5	Code Coverage Analysis
6	Outlook

Objectives of automated testing

- higher quality and better validation of software before first use in a real car
- monitoring of application data, in addition to test using test rigs and continuous operation

This is achieved using

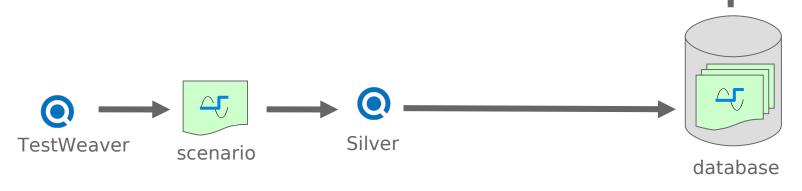

- many test scenarios, automatically generated in a controlled, intelligent way
- regression tests with simulation of continuous operation and scenario databases

Which errors are we looking for?

- runtime exceptions
- division by 0
- value out of bound w.r.t A2L
- access violation
- infinite loop

Range violations

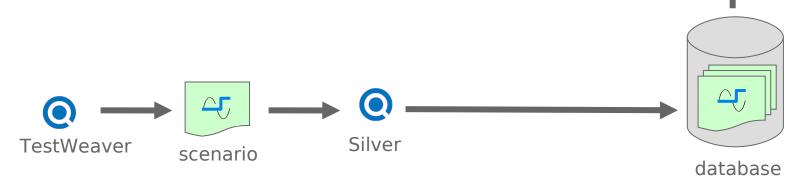
- user-defined criteria
- overheating of components
- duration of gear shifts



1 Initial setup

- define inputs, outputs, report templates and good/bad criteria for assessing system behavior
- create Python-script for engine start

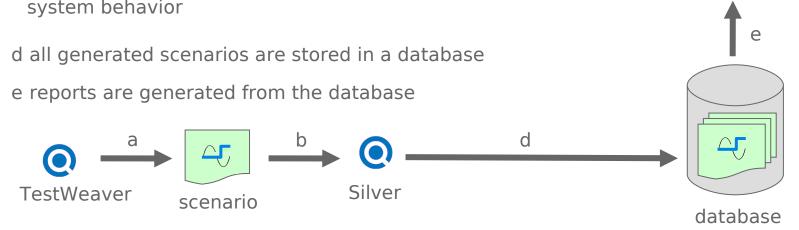
Ge	ear	worst scenario	scenarios i	not matching criterias	More Examples
Current	t Target	scenario & time	count	percentage	scenario & time
G1	G2	<u>s21286</u> 2.88	89.0	3,31%	<u>s210</u> 2.88, <u>s315</u> 2.88, <u>s1161</u> 19.26, <u>s1154</u> 19.14
G2	G1	<u>s19677</u> 37.32	727.0	25,21%	<u>s196</u> 37.32, <u>s115</u> 10.96, <u>s195</u> 37.32, <u>s198</u> 37.32
	G3	<u>s16280</u> 42.48	92.0	1,47%	<u>s63</u> 4.36, <u>s315</u> 5.26, <u>s322</u> 4.5, <u>s210</u> 5.42
G3	G2	<u>s8232</u> 23.68	251.0	26,79%	<u>s191</u> 37.04, <u>s189</u> 37.04, <u>s126</u> 23.68, <u>s40</u> 23.68
	G4	<u>s1776</u> 6.16	4.0	0,05%	<u>s1783</u> 6.16, <u>s1772</u> 6.16, <u>s1776</u> 6.16, <u>s1769</u> 6.16
G4	G2	<u>s4212</u> 21.98	1.0	1,10%	<u>s4212</u> 21.98
	G3	<u>s2989</u> 27.46	19.0	5,44%	<u>s50</u> 22.58, <u>s2061</u> 18.06, <u>s51</u> 22.58, <u>s14</u> 39.52
	G5	<u>s2648</u> 7.84	263.0	5,01%	<u>s70</u> 7.86, <u>s420</u> 7.88, <u>s406</u> 7.87, <u>s413</u> 7.83
G5	G4	<u>s16864</u> 36.84	10.0	2,20%	<u>542</u> 20.1, <u>543</u> 20.1, <u>544</u> 20.1, <u>541</u> 20.1
	G6	<u>s3338</u> 10.94	2.0	0,04%	<u>s3401</u> 10.94, <u>s3338</u> 10.94
G6	G3	<u>s25057</u> 36.64	65.0	17,33%	<u>s16626</u> 36.64, <u>s238</u> 36.64, <u>s16871</u> 37.5, <u>s16619</u> 36.6
	G5	<u>s3631</u> 19.9	26.0	5,99%	<u>s3497</u> 19.9, <u>s13</u> 17.36, <u>s3498</u> 19.9, <u>s3495</u> 19.9
	G7	<u>s4189</u> 16.46	381.0	10,58%	<u>\$490</u> 16.19, <u>\$1222</u> 12.76, <u>\$497</u> 16.45, <u>\$119</u> 16.26



2 Interface to Silver simulation enviornment

- For test, the same hardware and control software DLLs may be used, as for the SiL setup.
- TestWeaver starts and runs a Silver simulation for each generated scenario

Ge	ar	worst scenario	scenarios i	not matching criterias	More Examples
Current	Target	scenario & time	count	percentage	scenario & time
G1	G2	<u>s21286</u> 2.88	89.0	3,31%	<u>s210</u> 2.88, <u>s315</u> 2.88, <u>s1161</u> 19.26, <u>s1154</u> 19.14
G2	G1	<u>s19677</u> 37.32	727.0	25,21%	<u>s196</u> 37.32, <u>s115</u> 10.96, <u>s195</u> 37.32, <u>s198</u> 37.32
	G3	<u>s16280</u> 42.48	92.0	1,47%	<u>s63</u> 4.36, <u>s315</u> 5.26, <u>s322</u> 4.5, <u>s210</u> 5.42
G3	G2	<u>s8232</u> 23.68	251.0	26,79%	<u>s191</u> 37.04, <u>s189</u> 37.04, <u>s126</u> 23.68, <u>s40</u> 23.68
	G4	<u>s1776</u> 6.16	4.0	0,05%	<u>s1783</u> 6.16, <u>s1772</u> 6.16, <u>s1776</u> 6.16, <u>s1769</u> 6.16
G4	G2	<u>s4212</u> 21.98	1.0	1,10%	<u>s4212</u> 21.98
	G3	<u>s2989</u> 27.46	19.0	5,44%	<u>s50</u> 22.58, <u>s2061</u> 18.06, <u>s51</u> 22.58, <u>s14</u> 39.52
	G5	<u>s2648</u> 7.84	263.0	5,01%	<u>s70</u> 7.86, <u>s420</u> 7.88, <u>s406</u> 7.87, <u>s413</u> 7.83
G5	G4	<u>s16864</u> 36.84	10.0	2,20%	<u>542</u> 20.1, <u>543</u> 20.1, <u>544</u> 20.1, <u>541</u> 20.1
	G6	<u>s3338</u> 10.94	2.0	0,04%	<u>s3401</u> 10.94, <u>s3338</u> 10.94
G6	G3	<u>s25057</u> 36.64	65.0	17,33%	<u>s16626</u> 36.64, <u>s238</u> 36.64, <u>s16871</u> 37.5, <u>s16619</u> 36.6
	G5	<u>s3631</u> 19.9	26.0	5,99%	<u>s3497</u> 19.9, <u>s13</u> 17.36, <u>s3498</u> 19.9, <u>s3495</u> 19.9
	G7	<u>s4189</u> 16.46	381.0	10,58%	<u>5490</u> 16.19, <u>51222</u> 12.76, <u>5497</u> 16.45, <u>5119</u> 16.26

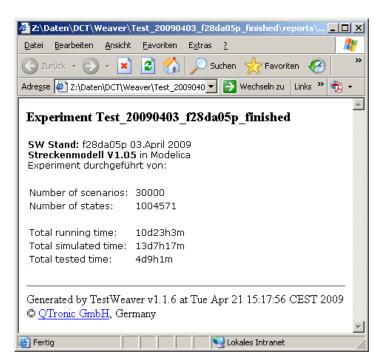


3 Test!

- a TestWeaver generates a scenario
- b Silver runs the scenario, remote controlled by TestWeaver
- c if the scenario leads to suspicious or critical behavior, TestWeaver varies that scenario, in order to provoke hard errors and local worst case system behavior

Ge	ar	worst scenario	scenarios i	not matching criterias	More Examples
Current	Target	scenario & time	count	percentage	scenario & time
G1	G2	<u>s21286</u> 2.88	89.0	3,31%	<u>s210</u> 2.88, <u>s315</u> 2.88, <u>s1161</u> 19.26, <u>s1154</u> 19.14
G2	G1	<u>s19677</u> 37.32	727.0	25,21%	<u>s196</u> 37.32, <u>s115</u> 10.96, <u>s195</u> 37.32, <u>s198</u> 37.32
	G3	<u>s16280</u> 42.48	92.0	1,47%	<u>s63</u> 4.36, <u>s315</u> 5.26, <u>s322</u> 4.5, <u>s210</u> 5.42
G3	G2	<u>s8232</u> 23.68	251.0	26,79%	<u>s191</u> 37.04, <u>s189</u> 37.04, <u>s126</u> 23.68, <u>s40</u> 23.68
	G4	<u>s1776</u> 6.16	4.0	0,05%	<u>s1783</u> 6.16, <u>s1772</u> 6.16, <u>s1776</u> 6.16, <u>s1769</u> 6.16
G4	G2	<u>s4212</u> 21.98	1.0	1,10%	<u>s4212</u> 21.98
	G3	<u>s2989</u> 27.46	19.0	5,44%	<u>s50</u> 22.58, <u>s2061</u> 18.06, <u>s51</u> 22.58, <u>s14</u> 39.52
	G5	<u>s2648</u> 7.84	263.0	5,01%	<u>s70</u> 7.86, <u>s420</u> 7.88, <u>s406</u> 7.87, <u>s413</u> 7.83
G5	G4	<u>s16864</u> 36.84	10.0	2,20%	<u>542</u> 20.1, <u>543</u> 20.1, <u>544</u> 20.1, <u>541</u> 20.1
	G6	<u>s3338</u> 10.94	2.0	0,04%	<u>s3401</u> 10.94, <u>s3338</u> 10.94
G6	G3	<u>s25057</u> 36.64	65.0	17,33%	<u>s16626</u> 36.64, <u>s238</u> 36.64, <u>s16871</u> 37.5, <u>s16619</u> 36.64
	G5	<u>s3631</u> 19.9	26.0		<u>s3497</u> 19.9, <u>s13</u> 17.36, <u>s3498</u> 19.9, <u>s3495</u> 19.9
	G7	<u>s4189</u> 16.46	381.0	10,58%	<u>5490</u> 16.19, <u>51222</u> 12.76, <u>5497</u> 16.45, <u>5119</u> 16.26

Advantages:


- seamless integration with the tool chain
- automated test case and scenario generation
- all scenarios can be reproduced in SiL
- support for debugging of all scenarios
- reports can be modified and updated from the database after simulation.

DCT_with_RPT_and_SiL_VDI_sildes.ppt

Ge	ear	worst scenario	scenarios i	not matching criterias	More Examples
Current	t Target	scenario & time	count	percentage	scenario & time
G1	G2	<u>s21286</u> 2.88	89.0	3,31%	<u>s210</u> 2.88, <u>s315</u> 2.88, <u>s1161</u> 19.26, <u>s1154</u> 19.14
G2	G1	<u>s19677</u> 37.32	727.0	25,21%	<u>s196</u> 37.32, <u>s115</u> 10.96, <u>s195</u> 37.32, <u>s198</u> 37.32
	G3	<u>s16280</u> 42.48	92.0	1,47%	<u>s63</u> 4.36, <u>s315</u> 5.26, <u>s322</u> 4.5, <u>s210</u> 5.42
G3	G2	<u>s8232</u> 23.68	251.0	26,79%	<u>5191</u> 37.04, <u>5189</u> 37.04, <u>5126</u> 23.68, <u>540</u> 23.68
	G4	<u>s1776</u> 6.16	4.0	0,05%	s1783 6.16, s1772 6.16, s1776 6.16, s1769 6.16
G4	G2	<u>s4212</u> 21.98	1.0	1,10%	<u>54212</u> 21.98
	G3	s2989 27.46	19.0	5,44%	s50 22.58, s2061 18.06, s51 22.58, s14 39.52
	G5	<u>s2648</u> 7.84	263.0	5,01%	<u>s70</u> 7.86, <u>s420</u> 7.88, <u>s406</u> 7.87, <u>s413</u> 7.83
G5	G4	s16864 36.84	10.0	2,20%	s42 20.1, s43 20.1, s44 20.1, s41 20.1
	G6	s3338 10.94	2.0	0,04%	<u>s3401</u> 10.94, <u>s3338</u> 10.94
G6	G3	s25057 36.64	65.0	17,33%	s16626 36.64, s238 36.64, s16871 37.5, s16619 36.64
	G5	s3631 19.9	26.0	5,99%	<u>s3497</u> 19.9, <u>s13</u> 17.36, <u>s3498</u> 19.9, <u>s3495</u> 19.9
	G7	s4189 16.46	381.0	10,58%	s490 16.19, s1222 12.76, s497 16.45, s119 16.26

Validation of a software release

- run at least 10.000 scenarios
- analyze reports and suspicious scenarios
- export critical scenarios to regression test database

Outline of the talk

1	History and Motivation
2	DCT Development
3	Rapid Prototyping
4	Automated Testing
5	Code Coverage Analysis
6	Outlook

Code Coverage Analysis with Testwell CTC++

CTC++ Covera	age Report - Files Summary						
Directory Summary Files S	Summary Functions Summary Execution Profile						
Data file(s) :\v Listing produced at : Fri	Data file(s) :\scenarios\MON.dat (Fri Jun 26 13:36:35 2009) Listing produced at : Fri Jun 26 13:38:21 2009						
Input listing : ST Html generated at : Fri ctc2html v2.5 options : -o Threshold percent : 10	Jun 26 13:38:21 2009 \scenarios\CTCHTML -nsb						
TER % - covered/ all	File						
	\dct\sims\sim_v1.2\f29aa05p\funct_c\ca\cabc\src						
	cabo.c						
	cabc_idata.c						
100 % 0/ 0 🗖	cabc_var.c						
23 % - 240/ 1049 🗖	DIRECTORY OVERALL (D:\simulation\dct\sims\sim_v1.2 \f29aa05p\funct_c\ca\cabc\src)						
Directory: D:\simulation	\dct\sims\sim_v1.2\f29aa05p\funct_c\ca\cacv\src						
46 % - 272/ 594 💻	cacv.c						
100 % 0/ 0 🗖	cacv_idata.c						
100 % 0/ 0 🗖	cacv_var.c						
46 % - 272/ 594 🗖	DIRECTORY OVERALL (D:\simulation\dct\sims\sim_v1.2 \f29aa05p\funct_c\ca\cacv\src)						

- integrated with TestWeaver
- separate report in TestWeaver
- coverage analysis for
 - entire project
 - C source file
 - functions
 - code path

Outline of the talk

1 History and Motivation	
2 DCT Development	
3 Rapid Prototyping	
4 Automated Testing	
5 Code Coverage Analysis	
6 Outlook	

Outlook: next steps

- further increase software quality
- increase code coverage
- simulation of continuous operation as regression test
- distributed simulation: software is simulated on multiple computers in parallel
- compare variants with each other
- build failure database with critical scenarios

Thank you for your attention!