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Abstract: Mercedes-Benz has recently added a crosswind stabilization function to the Active Body 

Control (ABC) suspension for the 2009 S-Class. For this purpose the ABC uses the yaw rate, lateral 

acceleration, steering angle and velocity sensors of the Electronic Stability Program ESP to vary the 

wheel load distribution via the ABC spring struts, depending on the direction and intensity of the 

crosswind. This function has to distinguish between vehicle reactions caused by crosswind, by driver 

interaction, and by road unevenness. The effects of the crosswinds can be compensated in this way, or 

reduced to a minimum in the case of strong gusts. For developing this function Mercedes Benz used the 

test case generator TestWeaver to generate thousands of different driving and crosswind scenarios. The 

scenarios have been executed using a co-simulation of: (i) a dynamic vehicle model (based on the in-

house tool CASCaDE), (ii) a road and crosswind model implemented in C and (iii) a 

MathWorks/Simulink model of the crosswind stabilization function. This simulation-based approach 

helped considerably to validate and iteratively improve the safeguarding algorithms of the stabilization 

function through all design phases. 
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1. INTRODUCTION 

Nowadays an increasing number of automotive functions is 

realized using software, resulting in a steadily growing 

complexity of automotive controllers. 

For validation and test of complex controllers, traditional 

methods based on hand-written test scripts do not scale well. 

Testing the controller in real life by trying to expose the 

system under test to all relevant situations is very time 

consuming or even not feasible without excessive effort. New 

methods and tools supporting a much higher degree of 

automation are required here, to meet shorter time-to-market 

and high quality demands. In this paper, we present one such 

method based on fully automated generation, execution and 

validation of useful test cases. We also report how the 

corresponding tool, TestWeaver, has been used to validate 

and iteratively improve the safeguarding algorithms of the 

crosswind stabilization function of the 2009 S-Class. The 

paper is structured as follows: in the next section, we describe 

our simulation-based validation and test environment. 

Section 3 presents the executable model of the system under 

test, consisting of the stabilization and safeguard functions, 

road, wind and vehicle models. Section 4 describes the 

automated test and validation process. We conclude with a 

brief assessment of the presented approach. 

 

 

 

2. VALIDATION AND TEST ENVIRONMENT 

The entire validation and test environment runs on a standard 

PC, without any real vehicle hardware in the loop. Section 3 

describes how a realistic system simulation model was built. 

Such a pure 'virtual' setup can be easily duplicated, e.g. to 

parallelize and hence speed-up development within a team. 

Another advantage is that, without real vehicle hardware 

(such as ECUs) in the loop, there is no real-time requirement 

for running the models: Simulation can be suspended at a 

specified event to inspect all variables of the simulated 

vehicle. Simulation can also be arbitrarily fast, resulting in 

increased test throughput. In our case, the simulation runs 

about 10 times faster than real time. Thus, in just 3 days of 

simulation, about one month of street driving, with a huge 

number of differing situations, can be simulated and analyzed 

on one PC. 

For automated validation (see Fig. 1), the simulation of the 

system under test is driven by a sequence of inputs generated 

by the test case generator TestWeaver. The inputs control the 

road and wind properties, acceleration and brake pedals, 

steering, and may also be used to activate dynamically 

(simulated) component faults, e.g. of sensors and actuators. 

Selected outputs of the simulation (such as car speed, gear 

rates, key variables of the controller) are observed by 

TestWeaver and stored together with the inputs in a data 

base, labeled 'state DB' in Fig. 1. 
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Fig. 1. Setup for simulation-based validation and test. 

The test case generation, execution and validation does not 

require any user interaction and is interleaved: a new test case 

depends on the outcome of all previously generated tests. 

TestWeaver generates tests not randomly (this does not help 

much), but in a reactive, informed way, trying to worsen 

actively scenarios that are already sub-optimal until system 

behavior is really bad, i.e. a bug or flaw has been found. 

Here, a 'bad' scenario is by definition a scenario where an 

output variable reaches a value classified as 'bad' in the test 

specification, see below. TestWeaver also attempts to 

maximize the coverage of the system state space, i.e. to reach 

every reachable state in at least one of the generated 

scenarios. As indicated in Fig 1, state space is here the space 

spanned by all inputs and outputs that connect the system 

under test to TestWeaver. Maximizing state coverage is non-

trivial, because TestWeaver can only control the inputs 

directly, not the outputs. For example, TestWeaver cannot set 

the speed of the car (an output of the model), but it can learn 

that pushing the acceleration pedal (an input of the model) for 

a while leads to high vehicle speed. To guide scenario 

generation, TestWeaver stores each state reached during 

simulation into a state data base, together with the sequence 

of inputs that leads into this state. Thereby TestWeaver 

successively learns how to control the system under test. 

TestWeaver uses this knowledge to drive the system into 

states not reached before (to maximize state coverage) and to 

worsen scenarios locally by automated variation of those 

already generated scenarios that got worst scores. 

Technically, an input or output is a model fragment 

implemented in C, Simulink, Modelica or Python as part of a 

model or sub-model and that connects to TestWeaver using 

TCP/IP to either retrieve input values during simulation or 

report output values.  

For testing a system with TestWeaver no test scripts need to 

be specified. Instead, a test or development engineer provides 

a very compact test specification with the following 

information: 

• names of input variables, allowed set of discrete values, 

and classification of these input values on a good-bad 

scale (to support fault injection) 

• names of output variables and classification of output 

values on a good-bad scale (to support automated 

validation of generated scenarios during execution) 

• templates for reporting reached coverage in the state 

space and other test results 

• general specification data, such as maximal duration of 

generated scenarios, upper-bounds for injected faults per 

scenario, command used to start the simulation, etc. 

TestWeaver reports the test results using HTML. Report 

templates use SQL (a standard for data bases) to define the 

content of the tables. All scenarios generated by TestWeaver 

can be replayed by the test engineer on demand for detailed 

investigation and debugging. More details can be found in 

(Brückmann et al. 2009), (Gäfvert et al. 2008), (Junghanns et 

al. 2008), (Rink et al. 2009). 

3. SYSTEM MODEL 

This section describes the executable system model used for 

automated validation by TestWeaver. Simulation has been 

implemented here as a co-simulation of several sub-models 

using the co-simulation tool Silver (Rink et al. 2009). In 

Silver, a sub-model contains either a numerical solver, or 

uses a numerical solver provided by Silver. In both cases, a 

Silver sub-model is a DLL (dynamic link library) that 

implements a certain API, such as the standard FMI (ITEA 2 

2010) or the proprietary Silver module API. For the 

application presented here, the modules and their mutual 

connections as well as the embedding in the Silver Co-

Simulation are shown in Figure 2. 

 

 

Fig. 2. Integration of CASCaDE-simulation into TestWeaver. 



 

 

     

 

The CASCaDE vehicle model has been exported as DLL that 

implements the Silver API and uses a CASCaDE solver for 

numerical integration (shown as vehicle dll). A second sub-

model was created to model crosswind and the road, called 

the environment dll in Figure 2. The wind stabilization 

function has been developed using MATLAB/Simulink and 

was included into the vehicle dll also comprising the 

CASCaDE vehicle model. A third sub-model called modifier 

dll contains all instruments (inputs u and outputs y in Fig. 1) 

used by TestWeaver to control simulated crosswind, road and 

vehicle and to observe and assess model behavior. 

3.1  Crosswind Stabilization Function 

The stabilization function (Keppler et al. 2010) is based on a 

disturbance observer which measures the difference between 

predicted and actual vehicle behavior. From the calculated 

deviation a disturbing moment around the vertical axis of the 

inertia system is derived. 

 

 

Fig. 3. Driving with and without stabilization function. 

 

If the safeguard functions determine that this moment is 

caused by crosswind, a path correction is induced by 

performing a diagonal wheel load actuation (warp mode) 

called Active Body Control crossover with the hydraulic 

struts of the ABC suspension. Through the elastokinematic 

design of the axle, changes in the toe angles are generated, 

resulting in an asymmetric side force.  This leads to a steering 

reaction of the car compensating the lateral offset induced by 

the crosswind. The intervention of the system is scaled to 

compensate the disturbing moment up to a designed degree. 

For simulation purposes the controller developed in Simulink 

was exported using the RealTime Workshop. In the 

CASCaDE (Rauh et al. 2008) simulation environment, used 

here for vehicle dynamic simulation, the subsystem-interface 

was used to couple efficiently the inputs and the outputs of 

the control system with the vehicle model. 

3.2  Road and Wind Model 

The system model also includes configurable road and wind 

models. During simulation, TestWeaver controls key control 

signals of this model in order to test the system under a great 

range of differing road and wind conditions. 

The bank angle of the road is modeled as superposition of 

two Bezier splines - capturing large and small scale variations 

of the bank angle. One such spline is shown, together with its 

control points, in Fig 4. Control points are dynamically 

generated by TestWeaver in front of the vehicle on demand 

during simulation. Similarly, the local road inclination is 

modeled by two Bezier splines for large and small scale 

variations. Again, control points are dynamically generated 

on demand by TestWeaver. The road generated by 

TestWeaver is constrained in a way that the acceleration of 

the driver does not exceed a certain threshold during driving. 

 

Fig. 4. Bank angle of road modeled using Bezier splines. 

Speed and direction of the wind is modeled and controlled in 

a similar manner. In addition, the wind model provides a 

couple of parameters for varying statistical properties of the 

wind, such as shape of and delay between wind gusts.  

The road and wind models have been implemented in C and 

compiled as a DLL that directly runs in Silver. The dynamic 

control of the road and wind model during simulation (as 

opposed to using predefined static road and wind profiles) 

gives TestWeaver better chances to increase the state 

coverage of the total system, including road, wind, vehicle 

and controller states: this way TestWeaver can better 

synchronize differing road and wind events with differing 

states occurring in the controller and vehicle model. 

3.3 Vehicle model 

The CASCaDE (Rauh et al. 2008) simulation model 

describes the vehicle dynamics of a car. All important aspects 

like steering, propulsion, braking system and suspension are 

modeled in appropriate depth and detail for vehicle dynamics 

analysis. A model of the hydraulic suspension system ABC 

with a simple representation of the hydraulic lines, valves, 

cylinders and the suspension struts is included. The detailing 

is adapted to the problems examined here. The original 

control software of this active suspension system is also 

embedded as exported c-code and linked with the model. The 

module receives sensor-information created by the simulation 

and outputs the control currents for the valves, thereby 

performing the desired wheel-load changes. 



 

 

     

 

The vehicle dynamics behavior and especially the steering 

effect based on wheel load variation – the elastokinematic 

effect used here for crosswind stabilization – were validated 

from measurements. The aerodynamic characteristics were 

parameterized from extensive wind tunnel measurements and 

validated from bypass measurements at a crosswind test 

facility. 

The ESP-algorithm is not included in the simulation model. 

Since crosswind impact is generally not strong enough to 

cause an ESP-intervention in the S-Class, a car featuring a 

strong directional stability, the influence of the ESP-system 

can be neglected in the study reported here. Only the ESP 

sensors used by the stabilization function are represented in 

the model. For other investigations the ESP could also be 

included.  

This simulation model (including the stabilization function 

from 3.1) was converted into a dynamic link library (DLL) 

with an open interface implementing the communication with 

Silver. Driver inputs, current tire patches and wind is fed to 

the vehicle simulation. Vehicle and controller states are 

reported back to TestWeaver for scenario assessment and 

state coverage measurements (see Figure 2). 

4. TEST OF THE STABILIZATION FUNCTION 

It is not possible to test all possible driving situations in real 

life. Disregarding the great effort in time and expenses which 

make extended test drives undesirable, even on test tracks, 

only a limited number of road profiles is available, so all 

possible road excitations can never be covered. Furthermore, 

the possibilities to create different wind profiles for real life 

testing are very limited. In virtual test drives, however, every 

combination of road and wind excitation can be generated. 

Therefore, TestWeaver was chosen as a promising approach 

to cover the necessary test range with acceptable effort. 

The main focus of the investigations was safeguarding 

against control impacts due to an erroneous crosswind 

detection. Since the observer bases the detection only on 

ESP-sensor data, and no direct wind-sensor is implemented, 

an asymmetric unevenness of the road, leading to lateral 

acceleration and yaw rate, could be interpreted as crosswind. 

To avoid the crosswind stabilization to respond to this 

excitation, other controller subsystems are designed to 

differentiate between vehicle reactions due to crosswind and 

reactions due to driver- and street-interaction or sensor faults. 

The first focus was on trying to provoke the crosswind 

stabilization function to perform steering impacts due to 

driver and street interaction, thus detecting holes in the 

safeguarding mechanisms. Since basic features of 

safeguarding rules implemented were specified, and already 

sufficiently tested, the range of feasible driving- and 

environment situations in which the function had to be tested 

in this approach could be restricted to situations not already 

reliably and adequately covered. Thus scenarios not 

respecting these well-known limits set by the safeguarding 

mechanisms, for instance, on steering wheel angle or 

velocity, were not investigated and excluded in advance from 

the situations possibly chosen by TestWeaver. By taking into 

account this beforehand knowledge the design range 

TestWeaver had to cover to guarantee the reliability of the 

system was reduced to the regions not verified so far, 

allowing TestWeaver to work more efficiently. 

Finding categories of suited street excitations was an iterative 

approach. Too high excitations were easily detected by the 

safeguard mechanisms implemented so far. Too small 

excitation did not lead to a relevant wind force estimation 

and, thus, to no reaction of the system. After choosing a 

promising range from evaluating the TestWeaver results, 

TestWeaver found several categories of impacts which the 

controller was not safeguarded against. 

The mechanism included at the examined design stage only 

used the difference in spring travel between left and right 

wheel with the standard sensors being available in the ABC 

suspension system. The failure scenarios found with 

TestWeaver showed that a certain type of street unevenness 

did not lead to a high enough difference in spring travel. 

Reducing the critical limit of difference spring travel allowed 

was not an appropriate solution - this would reduce the 

percentage of time the system is active. The relevant 

scenarios were nonetheless marked by a high individual 

spring travel. From this observation a new safeguarding 

module was added, combining individual and difference 

spring travel. 

After this element was included in the controller, a re-run of 

the critical scenarios showed that the unevenness was now 

detected. New runs with TestWeaver proved that the 

protection against false crosswind recognition was complete. 

The proportion of time the system was active was not 

reduced. Thus, this new criterion was implemented and 

approved in the test runs. 

In a second approach TestWeaver was additionally used to 

create sensor faults of different classes: sudden offsets or 

linear drifts on the different sensor signals used by the 

observer and the safeguarding mechanism. Here TestWeaver 

was used during the design phase of the detection module 

inside the controller. Current versions were immediately 

exported, linked with the vehicle system simulation and 

tested with TestWeaver. The effectiveness of new measures 

or chosen limits was investigated before a first version was 

tested in the vehicle. 

5.  CONCLUSION 

We reported how a closed-loop vehicle simulation in 

combination with the test case generator TestWeaver has 

been used to support and guide the development of a 

crosswind stabilization function. The validation reported has 

been conducted by a single engineer (a novice TestWeaver 

user at that time) within about three weeks. In that time, 

about 100.000 different driving scenarios, each 45 sec. long, 

have been generated, executed and validated. The setup has 

been changed and extended during the investigation to 

explore also the effect of sensor faults. The coverage 

achieved this way would have been hard, if not impossible, to 

achieve with comparable effort using a less automated 

approach, e. g. based on hand-written test scripts, driving a 



 

 

     

 

real car on the road, or using the Daimler crosswind test 

facility.  

To summarize, the presented approach seems extremely well 

suited for the validation of complex automotive controllers 

during all stages of development. The main benefit is in the 

high test coverage that can be achieved with low work effort 

for engineers, based on a compact high-level specification of 

the validation task. 
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