# INTELLIGENT TEST-CASE GENERATION FOR AUTOMATED VALIDATION OF TCUs

Lionel Belmon, Technical director Global Crown Technology



Yijia Xu, Software Engineer

DCT Project engineering

SAGW/SAIC group





#### **Outline**

- Introduction, context, motivation
- Automatic validation with TestWeaver
- Implementation for a Simulink setup
- Applications and use cases
- TestWeaver and HiL
- Conclusions and limitations





#### Context and introduction

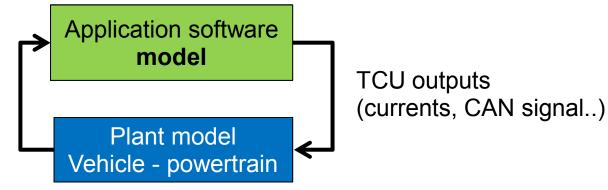
- DCT project at SAIC-SAGW
- Model based development of the TCU Application software
  - Auto-code of the software from models
- Testing and validation of the application software





# Challenges and motivation

- TCU software is in closed loop control with the vehicle
  - Open loop / module testing is not representative
- Number of test cases to be covered is huge
  - Gearshifts, drive inputs, environment...
  - How to generate quickly high coverage ?
  - How to efficiently analyze test results?

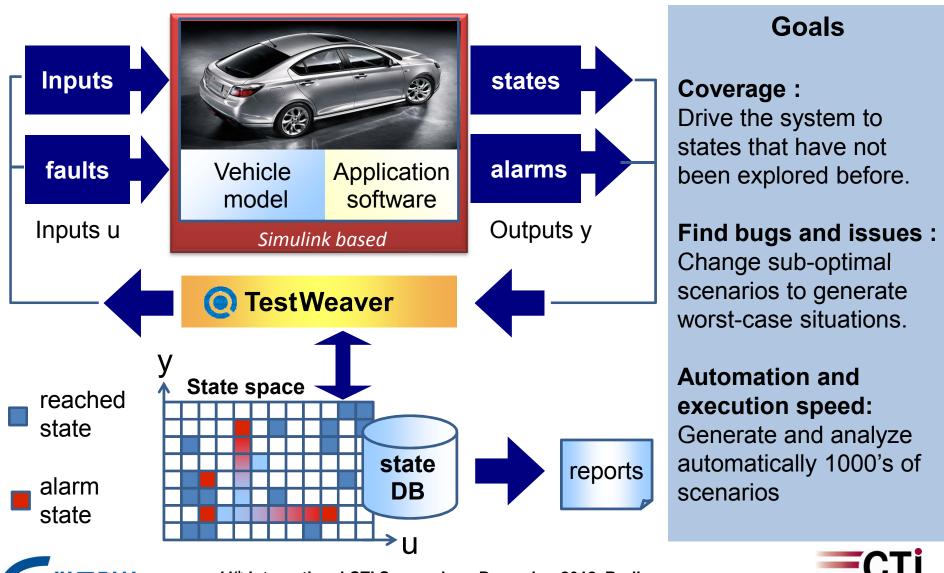





# System Under Test

# **Model-in-the-Loop**Simulink based

Sensors signals CAN signals...




- Application Software model is used for code generation
- Realistic plant model

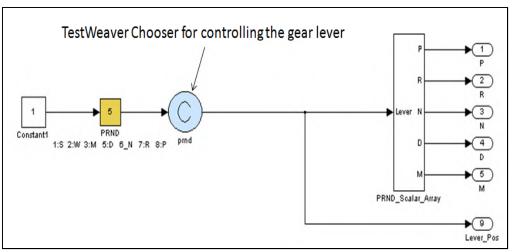


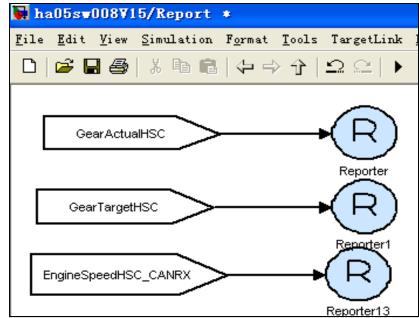


#### Principles for test generation






11th International CTI Symposium, December 2012, Berlin


- Lionel Belmon - Global Crown Technology, Yijia Xu - SAGW (SAIC group)



#### Implementation in Simulink

Addition of TestWeaver instruments inside the Simulink model Avoid modifications of the original model Packaging of instruments into a separate subsystem









# Compilation of the SUT – Simulation speed

Use of the grt.tlc Simulink target to compile the model to a instrumented\_model.exe through Simulink Coder / RTW

The .exe contains TCP connection to TestWeaver

The .exe is executed 1000's of times by TestWeaver

Compiled Simulink model runs around 50x times faster than interpreted model

2000 driving sequences of 1 minute each generated/evaluated in less then 2 hours.





# Reporting system

#### Reported variables:

Actual Gear
Target Gear
Car speed, acceleration
Engine speed/torques
Shafts speeds/torques
Gearshift time counters
Clutches temperature
Synchronizers positions

. . .

Around 15 reports analyzing tested scenarios

#### **State coverage report**

| currentGear | targetGear | slope    | engineTorque | scenarios     |
|-------------|------------|----------|--------------|---------------|
|             |            |          | medium       | s4            |
|             | 1          | downhill |              | s2            |
|             |            |          | low          | s0            |
|             |            | uphill   |              | s1            |
|             |            |          | medium       | s0, s4, s3    |
|             |            | flat     | high         | s7, s6        |
|             | 2          | downhill |              | s2            |
|             |            |          | aroundZero   | s2            |
|             |            | downhill |              | s2            |
|             |            |          | high         | s7, s6        |
| 2           | 1          | downhill | brake        | s2            |
|             |            | downhill | aroundZero   | <u>s2</u>     |
|             |            | downhill | low          | <u>s2</u>     |
|             |            | downhill | medium       | <u>s2</u>     |
|             | 2          | downhill |              | <u>s2</u>     |
|             |            |          | high         | <u>s7, s6</u> |
|             | 3          | downhill |              | <u>s2</u>     |
|             |            |          | high         | <u>s7, s6</u> |
| 3           | 2          | downhill |              | <u>s2</u>     |
|             | 3          | downhill |              | <u>s2</u>     |
|             |            |          | high         | <u>s7, s6</u> |
|             | 4          | downhill |              | <u>s2</u>     |
|             |            |          | high         | <u>s7, s6</u> |
| 4           | 3          | downhill |              | <u>s2</u>     |
|             | 4          | downhill |              | <u>s2</u>     |
|             |            |          | high         | <u>s7, s6</u> |
|             | 5          | downhill |              | <u>s2</u>     |
|             |            | flat     | high         | <u>s7, s6</u> |





# Reporting system – Switch of test paradigm

#### Script based testing:

How to write a script that will go from 0% accelerator position to 100% accelerator position during a gearshift?

#### TestWeaver approach:

write a query which will find all generated scenarios where such case happen

#### where

state.targetGear.value != state.currentGear.value // detect a gearshift

and

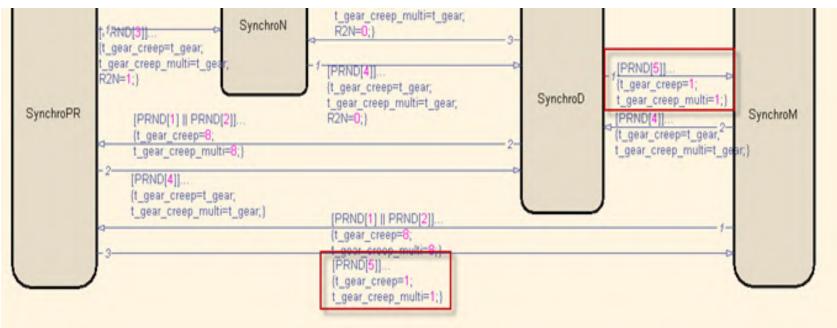
state.accel Pedal.value='0' // current position is 0%

and

nextState.accelPedal.value='100' //next state is 100% pedal






# Application and use cases - debugging

TestWeaver found engine speed above prescribed limit of 7300 rpm after a sequence of changes in PRND.

| me   | Input sequence             | faults | Actual gear | Tgt<br>gear | Odd<br>shaft | Even<br>shaft | alarms                                                       | duration | Car<br>speed | Caracceleration | Engine speed |
|------|----------------------------|--------|-------------|-------------|--------------|---------------|--------------------------------------------------------------|----------|--------------|-----------------|--------------|
| 31.4 | 170-                       | (none  | ) 5         | 4           | 5            | 6             | (none)                                                       | 0.030    | 4060         | -0.20.5         | 14006010     |
| 31.5 | 500pmd=R                   | (none  | ) 5         | 4           | 5            | 6             | (none)                                                       | 0.020    | 4060         | -0.20.5         | 14006010     |
| 31.5 | 520-                       | (none  | ) 5         | 4           | 5            | 6             | (none)                                                       | 0.080    | 4060         | -0.20.5         | 14006010     |
| 31.6 | 500 slope=-20<br>prnd=W    | (none  | ) 5         | R           | 5            | 6             | (none)                                                       | 0.005    | 4060         | -0.20.5         | 14006010     |
| 31.6 | 505-                       | (none  | ) N         | R           | 5            | 6             | (none)                                                       | 0.015    | 4060         | -0.20.5         | 14006010     |
| 31.6 | 520-                       | (none  | ) N         | R           | 5            | 6             | (none)                                                       | 0.010    | 4060         | -0.20.5         | 14006010     |
| 31.6 | 530-                       | (none  | ) N         | 4           | 5            | 6             | (none)                                                       | 0.010    | 4060         | -0.20.5         | 14006010     |
| 31.6 | 540-                       | (none  | ) N         | 4           | 5 5          | 6             | (none)                                                       | 0.010    | 4060         | -0.20.5         | 14006010     |
| 31.6 | 550-                       | (none  | ) N         | 4           | 5            | 0             | (none)                                                       | 0.050    | 4060         | -0.20.5         | 14006010     |
| 31.7 | 700 AccelPedal=0<br>prnd=M | (none  | ) N         | 4           | 5            | 0             | (none)                                                       | 0.020    | 4060         | -0.20.5         | 14006010     |
| 31.7 |                            | (none  | ) N         | 4           | 5            | 0             | (none)                                                       | 0.020    | 4060         | -0.20.5         | 14006010     |
| 31.7 | 740-                       | (none  | ) N         | 4           | 5            | 0             | (none)                                                       | 0.010    | 4060         | -0.20.5         | 14006010     |
| 31.7 | 750-                       | (none  | ) N         | 1           | 5            | 0             | (none)                                                       | 0.055    | 4060         | -0.20.5         | 14006010     |
| 31.8 | 305-                       | (none  | ) N         | 1           | 5            | 4             | (none)                                                       | 0.190    | 4060         | -0.20.5         | 14006010     |
| 31.9 | 95-                        | (none  | ) N         | 1           | 0            | 4             | (none)                                                       | 0.272    | 4060         | -0.20.5         | 14006010     |
| 32.2 |                            | (none  | ) N         | 1           | 0            | 4             | (none)                                                       | 0.931    | 6080         | -0.20.5         | 14006010     |
| 33.1 |                            | (none  |             | 1           | 0            | 4             | (none)                                                       | 0.001    | 6080         | 11.5            | 14006010     |
| 33.1 |                            | (none  |             | 1           | 0            | 4             | (none)                                                       | 0.001    | 6080         | -0.20.5         | 14006010     |
| 33.2 |                            | (none  |             | 1           | 1            | 4             | (none)                                                       | 0.190    | 6080         | -0.20.5         | 14006010     |
| 33.3 | 390-                       | (none  | ) N         | 1           | 1            | 0             | (none)                                                       | 0.385    | 6080         | -0.20.5         | 14006010     |
| 33.7 |                            | (none  | ) N         | 1           | 1            | 0             | (none)                                                       | 0.105    | 6080         | -50.2           | 14006010     |
| 33.8 | 380-                       | (none  | ) N         | 1           | 1            | 2             | (none)                                                       | 0.323    | 6080         | -50.2           | 14006010     |
| 34.2 | 203-                       | (none  | ) N         | 1           | 1            | 2             | (none)                                                       | 0.041    | 4060         | -50.2           | 14006010     |
| 34.2 | 244-                       | (none  | ) N         | 1           | 1            | 2             | EngineSpeedHSC CANRX=60107310<br>nEng SENS PT OUT=60107310   | 0.204    | 4060         | -50.2           | 6010731      |
| 34.4 | 148-                       | (none  | ) N         | 1           | 1            | 2             | -                                                            | 0.123    | 4060         | -0.20.5         | 60107310     |
| 34.5 | 571-                       | (none  | ) N         | 1           | 1            | 2             | EngineSpeedHSC CANRX=731010000<br>nEng SENS PT OUT=731010000 | 0.034    | 4060         | -0.20.5         | 73101000     |
| 34.6 | 505-                       | (none  | ) 1         | 1           | 1            | 2             |                                                              | 0.225    | 4060         | -0.20.5         | 73101000     |
| 34.8 | 330-                       | (none  |             | 2           | 1            | 2             |                                                              | 0.242    | 4060         | -0.20.5         | 73101000     |

# Application and use cases - debugging

Replay of the scenario in Simulink for debugging Bug is localized as an incorrect state transition Correction implementation Replay of the scenario with corrected logic Problem solved







#### TestWeaver and HiL

TestWeaver can be connected to various HiL systems (dSPACE, ETAS, NI...) to generate and analyze scenarios

HiL+TestWeaver setup is more complex than MiL XCP/UDS protocol to the ECU, read/reset scripts Additional interfaces with the HiL model

HiL setups are *slow (real-time)*. MiL can be much faster. Generating 2000 scenarios on HiL would take 40hours Generating 2000 scenarios on MiL takes 2 hours

For this project, TestWeaver was not used for test generation on the HiL. Instead MiL scenarios were exported to HiL.

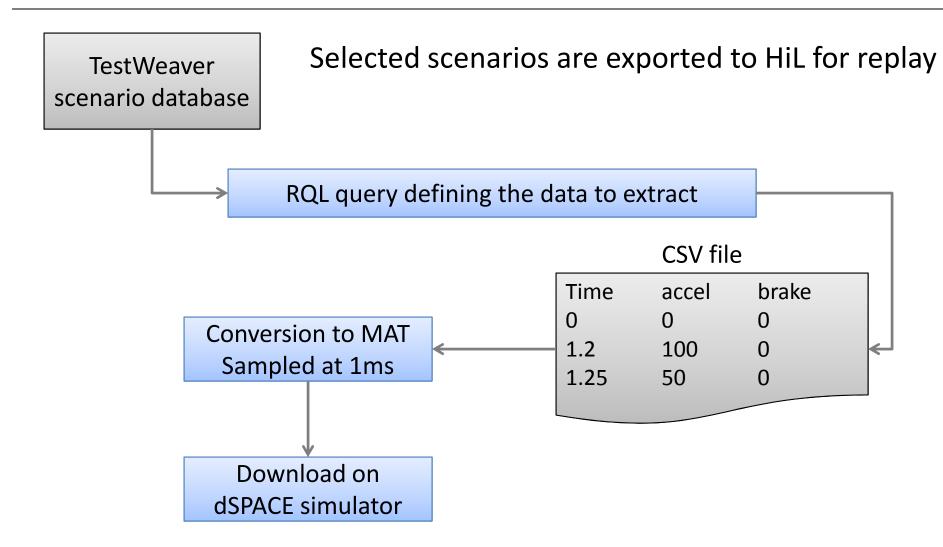




# Motivation of exporting scenarios for HiL

**Back to back testing**: Verification of the real TCU behavior (instead of model) for specific scenarios

Ready-made scenarios database for HiL, reduce HiL scripting work


HiL setup replays much faster than Simulink interpreted model

Analyzing data on CANape is much easier than looking at scopes on Simulink





# Exporting a scenario for HiL replay







#### Conclusions and perspectives

A method for automatic large coverage testing of Transmission Control Unit has been established, helpful for debugging and validating complex controls

#### **Limitations:**

Calibration parameters are not easily handled in the Simulink model.

The TCU model is tested but not the TCU production c-code.

System state coverage can be measured but not the code coverage.

Replaying is slow due to the interpreted Simulink model.

No connection with **measurement and calibration tools** such as CANape, no convenient writing/reading of measurements files (.mdf)

**CAN configurations** (dbc files) are not included in the Simulink-based test

Above issues can be solved with the Virtual ECU Simulation using QTronic Silver



