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Abstract
AMG has recently completed the development of the AMG SPEEDSHIFT DCT. For development 
and test of the control software AMG used a novel test method based on a test case generator, 
and a software-in-the-loop (SiL) setup used to run the DCT control software in closed loop on a 
Windows PC. In this paper, we motivate and describe the corresponding test process and tool 
chain in detail, and discuss costs and benefit of this approach.

1 Introduction
For the validation and test of transmission controllers, established methods based on hand-written 
test scripts do not scale well. Testing the controller in real life by trying to expose the transmission 
under test to all relevant driving situations repeatedly during the development cycle is very time 
consuming or even not  feasible without excessive effort.  New methods and tools supporting a 
much higher degree of  automation are required here, to meet shorter  time-to-market  and high 
quality demands.

In this paper we present one such method based on fully automated generation, execution and 
evaluation of useful test cases. In particular, we report how the corresponding tool, TestWeaver, 
has been used to validate and iteratively improve the control software of the DCT for a super 
sports car, the Mercedes-Benz SLS AMG [1].

 

Fig. 1: The drivetrain of the Mercedes-Benz SLS AMG with the AMG front mid-engine M159, 
torque tube and the AMG SPEEDSHIFT DCT



The development environment for the DCT control software integrates the following components

• MATLAB/Simulink is used for model-based development of the DCT  control software.

• TargetLink turns the Simulink model (about 150 modules) into high quality C code for two 
targets: the real TCU and the SiL / Silver platform described below.

• A well calibrated simulation model of the SLS AMG and the DCT hardware. The simulation 
code has been generated using Dymola from Modelica source code of the model.

• Silver as a tool for virtual integration using software-in-the-loop simulation. Silver imports 
both  the  vehicle  model  generated  by  Dymola  and  the  TCU  software  generated  by 
TargetLink as DLLs and runs them in a co-simulation on standard Windows PC. In addition, 
Silver  provides  interfaces  to  automated  system  test,  the  A2L  database  to  integrate 
calibration  data  into  the  simulation  loop,  and  XCP,  to  support  virtual  calibration  and 
measurement, using the same protocols as in a real car.

• The test  case  generator  TestWeaver  [2,  3]  to  automatically  generate,  run  and  assess 
thousands of different driving scenarios for comprehensive system test during development 
of the DCT control software.

We see the main benefit achieved by using this tool chain in the:

• speed-up of the development process:  Development and application of the DCT control 
software has been performed with only 6 software development cycles in a relatively short 
time. The observed shortening of  development time is partly credited to the simulation-
based tool chain sketch above. It enabled the developers to perform more engineering and 
test tasks on their PCs, avoiding blocking of rare resources like physical prototypes and HiL 
test rigs, and thus contribute to speedup the entire workflow.  

• increased safety of the development process: The automated generation of high-quality test 
cases in conjunction with automated test execution and assessment via SiL enabled us to 
perform  a  much  higher  number  of  test  cases  than  possible  with  same  effort  using 
conventional test methods. This increased the overall safety of the development process.

The paper is structured as follows: in the next section, we describe the environment used for the 
virtual integration of the essential modules of the DCT control software. Section 3 gives a brief 
description of the DCT simulation model. Section 4 describes the automated test and validation 
process, and Section 5 provides a critical assessment of the presented approach, with focus on 
costs and benefits.

2 Virtual integration of the DCT software modules
The development environment for the DCT software contains an incremental build system used to 
integrate and build the control software for two target execution platforms:

(a) the binary for the target TriCore TCU and

(b) the binary (DLL file) for the PC target used by the software-in-the-loop (SiL) setup. 

This way a developer can compile the module that he is currently developing, link it with the object  
files of all other modules and immediately run the resulting integrated control software on his PC, 
to test the effects of his last changes in the context of the whole system (Fig 2). The entire compile 
and build loop takes less than 10 minutes. The SiL setup provides access (plot and control) to 
thousands of  variables of the control software that are listed in the A2L file, and to over 2800 
variables  of  the  simulation  model.  Simulation  can  be  stopped  at  any  time  to  inspect  these 
variables, to attach a debugger, and to inject faults by changing variable values. The simulation 
can be driven by a measurement MDF file or by a Python script, for instance, in order to trigger the 
adaptation algorithms that adapt certain parameters of the DCT control software to properties of 
the simulated car. The resulting adaptation values can be saved to files and reused later during the 
automated test. Moreover, the application data (hex or par files as used for the target) can be 
'flashed'  into  the simulation.  This  way,  it  is  possible  to  test  the  control  software including  the 



application  data  and  the  data  resulting  from  adaptation  procedures  on  the  developer's  PC. 
Measurement and calibration tools (such as CANape or INCA) can be attached to the SiL setup via 
XCP. This way, the plotter and measurement masks used in the real vehicle or on test rigs can be 
used on the PC as well.

Fig. 2: DCT control software running in Silver

Fig. 3: Features of the SiL setup for the DCT control software

A key issue when setting up a SiL is how to actually integrate the control software. In the case 
reported here, we used adapter code (bottom right in Fig. 3) to integrate the controller code. The 



adapter contains interfaces to support flashing of hex or  par files, automatic scaling of  integer 
variables based on given A2L files, scheduling of all tasks with given sample rates, CAN emulation 
based on given DBC files and error-handling emulation.

3 Simulation model of SLS AMG with DCT
Model-based test of control software requires a simulation model of the controlled system. Quality 
assessment  of  the control  software typically requires a well  calibrated simulation model,  while 
coding  errors  can  often  be  found  using  quite  simple  models.  In  the  case  reported  here,  the 
required  vehicle  model  of  the  SLS  AMG  sports  car  was  developed  by  QTronic  using 
Modelica/Dymola  and QTronics's  Auto  component  library.  The model  contains  2844  variables, 
including 34 continuous state variables. It  models the longitudinal dynamics of the vehicle and 
includes (cf. Fig. 4): a road model with different surface properties (dry / wet asphalt, ice), wheels 
with given slip characteristics, a car body with given air and driving resistance and dynamically 
varying axle load, a model of the combustion engine M159 including the protocol to serve torque 
requests of the TCU, and a detailed model of the DCT hydraulic unit.

Fig. 4: Modelica model of the Mercedes-Benz SLS AMG

The DCT hardware has been modeled as shown in Fig 5. Each clutch of the double clutch is  
modeled by a hydraulic piston moved against friction forces and two springs with given non-linear 
characteristics, generating a force to control the torque transmitted by the clutch (bottom left of Fig 
5). The mechanical part of the DCT is decomposed into four gear actuators. Each actuator allows 
to hydraulically activate one of two gears. Special care was taken to calibrate the dynamic behavior 
of the double clutch and of the gear actuators. The simulation code generated by Dymola from the 
Modelica model executes approximately in real time on a Windows PC with 1.69 GHz Pentium and 
2GB Ram.



It took about two person weeks to develop an initial version of the simulation model as sketched 
above. This surprisingly low initial effort is credited to the use of Modelica as a high-level modeling 
language  and  also  to  the  use  of  the  Auto  library  which  provides  a  mature  starting  point  for 
modeling  transmission  systems.  The  initial  model  was,  however,  only  good  enough  to  run  in 
closed-loop with the DCT control  software without  forcing the control  software into emergency 
mode. At this stage, the SiL setup could only be used to find hard coding or application errors and 
to check whether the modules roughly work together as expected. In order to also support more 
subtle quality assessments, e.g. of micro slip control of the double clutch, further work was needed 
for calibrating the parameters of the model. This took a few months of continuous work, based on 
repeated measurements performed on test rigs and vehicle prototypes.

Fig. 5: Modelica model of DCT mechanics, clutch k1 and actuation of gear 1 and 3 detailed

4 Automated testing the DCT software
For the automated test of the DCT control software, the SiL setup is driven by a sequence of inputs 
dynamically  generated  by  the  test  case  generator  TestWeaver.  The  inputs  control  the  road 
properties, acceleration and brake pedals, PRND lever position, and may also be used to activate 
dynamically (simulated) component faults, e. g. of sensors or hydraulic valves. Selected outputs of 
the simulation (such as car speed, engine torque and key variables of the controller) are observed 
by TestWeaver and stored together with the inputs in a data base, labeled 'state DB' in Fig. 6. The 
test  case  generation,  execution  and  evaluation  does  not  require  any  user  interaction  and  is 
interleaved:  a  new  test  case  depends  on  the  outcome  of  all  previously  generated  tests. 
TestWeaver generates tests not randomly (this does not help much), but in a reactive, informed 
way, trying to worsen actively scenarios that are already sub-optimal until system behavior is really 
bad, i. e. a bug or flaw has been found. Here, a 'bad' scenario is by definition a scenario where an 
output variable reaches a value classified as 'bad' in the test specification, see below. TestWeaver 



also attempts to maximize the coverage of the system state space, i. e. to reach every reachable 
state in at least one of the generated scenarios. As indicated in Fig. 6, the state space is here the  
space  spanned  by  all  inputs  and  outputs  that  connect  the  system under  test  to  TestWeaver. 
Maximizing state coverage is non-trivial, because TestWeaver can only control the inputs directly, 
not the outputs. For example, TestWeaver cannot set the speed of the car (an output of the model), 
but it can learn that pushing the acceleration pedal (an input of the model) for a while leads to high 
vehicle  speed.  To  guide  scenario  generation,  TestWeaver  stores  each  state  reached  during 
simulation into a state data base, together with the sequence of inputs that leads into this state. 
Thereby TestWeaver successively learns how to control the system under test. TestWeaver uses 
this knowledge to drive the system into states not reached before (to maximize state coverage) 
and to worsen scenarios locally by automated variation of those already generated scenarios that 
got worst scores.

For testing a system with TestWeaver,  no test  scripts need to be specified.  Instead,  a test  or 
development engineer provides a compact test specification with the following information:

• names of input variables, allowed set of discrete values, and classification of these input 
values on a good-bad scale, to support fault injection

• names of  output  variables  and classification  of  output  values  on a  good-bad scale,  to 
support automated evaluation of generated scenarios during execution

• templates for reporting the reached coverage in the state space, reached code coverage 
and other test results

• general specification data, such as maximal duration of generated scenarios, upper-bounds 
for injected faults per scenario, command used to start the simulation, etc.

TestWeaver reports the test results using HTML (Fig. 7). Report templates use SQL - a standard 
for data bases - to define the content of the tables. All scenarios generated by TestWeaver can be 
replayed by the test engineer on demand, e. g. all TCU and all model signals can be plotted for 
detailed investigation and debugging.

Fig. 6: Setup of the automated DCT software test

For testing the DCT control software, TestWeaver was configured as follows. First, alarm variables 
where  defined  in  the  SiL setup  (or  activated if  predefined)  to  detect  and  report  the  following 
situations:

• Runtime exceptions: report division by zero, access violation,  stack overflow, timeouts e. g. 
due to slow simulation, and other exceptions. This kind of alarm is a built-in feature of Silver 
and does not require special setup.



• A2L range violation: monitor and report out-of-range values of integer variables. These kind 
of alarm is configured by passing the corresponding A2L file to Silver, which activates range 
monitoring  for  all  TCU signals  (thousands of  variables).  The range of  each variable  is 
checked at the end of each control cycle, i.e. every 10 ms.

• Shift duration: all shifts are monitored, average and maximal shift durations are reported for 
each shift class.

• DCT condition monitoring: alarm variables have been defined to detect and report about 
200  symptoms  that  indicate  potential  problems.  Examples  for  such  alarms:  diagnostic 
trouble code generated by DCT software without a reason (i. e. without a fault injected by 
TestWeaver into the simulation), unwanted oscillations of certain signals generated by the 
DCT control software, e. g. of the target gear, unwanted oscillations of controlled variables, 
e.g. current for magnetic valves, high temperature of  a (simulated) clutch,  engine over-
speed or stalled.

• Code  coverage:  the  code  coverage  achieved  by  running  the  scenarios  generated  by 
TestWeaver  is  measured and reported.  This  feature is  achieved by compiling  the DCT 
control software with a special flag that activates measurement code. For measuring the 
code coverage, CTC++ by Testwell has been used, which is integrated with the TestWeaver 
report generator.

TestWeaver was further configured to automatically vary the following inputs to create scenarios:

• acceleration pedal: 0%, 10% 25%, 50%, 85%, 100%
• brake pedal: 0%, 25%, 50%, 75%, 100%
• transmission selector lever: one of P, R, N, D
• drive program selector: comfort, sport, super-sport, manual
• manual shift: up, down, or neutral, used if manual drive program is activated
• road steepness: -20%, 0%, 20%
• fault injection: several input variable used to inject component faults into the simulation.

Test results are reported by TestWeaver using tables (HTML), whose content is specified by report 
templates when setting up a test project. Fig 7. is an example for such a generated report. The 
table lists scenarios that contain range violations. Other problems detected by TestWeaver are 
reported in a similar way. 

Fig. 7: Test results reported by TestWeaver

A scenario (e. g.  s638) listed in the table can be inspected and replayed as a SiL simulation for 
detailed debugging by clicking on the corresponding link. The ability to exactly reproduce found 
problems as often as needed is an essential  feature for  fast  debugging and tracking of  found 
problems. Consider as an example the scenario shown on top of Fig. 8. In this case, the target 



gear computed by the DCT control software toggled between gear 5 and 6. Fig 8 (bottom) shows 
the same scenario after fixing the corresponding problem. 

Fig 8: Oscillating target gear (green) before and after a bug fix

The development of the DCT control  software took only 6 software development cycles. Each 
release  of  the  software  was  tested  also  with  TestWeaver,  performing  over  3000  qualitatively 
different driving scenarios for each test. This means that, for each software release, thousands of 
different shift  actions have been tested against hundreds of correctness and quality indicators. 
Many usual  but  also many unusual  driving situations were generated and tested this way,  for 
instance: changing the pedal positions and pressing all kind of buttons during the shifts or during 
the engine interventions, for all kind of shifts, with all drive programs, all slope classes, etc. This 
systematic  analysis  of  the possible system conditions is  only possible in  simulation and is  an 
important complement to the other test and quality assurance measures, such as test benches and 
prototype test.

5 Conclusion
We presented an approach for an automated test of automotive control software based on SiL 
simulation  on  standard  PCs  and  intelligent  generation  of  test  cases.  We  demonstrated  the 
successful application of the method during the development of the control software of the AMG 
SPEEDSHIFT DCT. The presented approach has an excellent cost/benefit ratio, resulting in high 
test coverage with moderate work load for development engineers. Moreover, the SiL setup of the 
DCT software,  initially meant  to  just  support  test  automation,  proved to be a valuable tool  for 
assessing, analyzing and debugging the system behavior in itself. 
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